EcoAdapt’s Climate Vulnerability Assessment Cheat Sheet

\[V = E + S - AC \]

Vulnerability (V) to climate change reflects:

Exposure (E): how much change occurs, including changes outside the project area that affect the target (e.g. loss of glaciers \(\rightarrow \) loss of water supply)

Sensitivity (S): how much the target is affected by a given amount of change

Adaptive capacity (AC): ability to adapt to change; reflects intrinsic traits (e.g. phenotypic plasticity of individuals, species diversity of communities) or extrinsic factors (e.g. degree of habitat fragmentation)

Defining Vulnerability: Climate change vulnerability refers to the extent to which a species, habitat, or ecosystem process is susceptible to harm from climate change impacts. **What** things are most vulnerable and **why** are they vulnerable.

Vulnerability Components

Factors to consider for assessing Exposure: primary factors (e.g., temperature, precipitation) and secondary factors (e.g., hydrology, sea level rise, vegetation changes); non-climate stressors (e.g., development, invasive species)

Factors affecting Sensitivity: narrow environmental tolerances or thresholds; dependence on interactions with other species; specialized habitat requirements; disturbance regimes; additional stressors

Factors that can influence Adaptive Capacity: plasticity; dispersal abilities; evolutionary potential; landscape permeability; institutional capabilities

Figure 1. From Glick et al. 2011.
OPTIONS FOR DECREASING VULNERABILITY OF A SPECIES OR A SYSTEM

1. Decreasing EXPOSURE
 - Reducing greenhouse gas emission to reduce rate and extent of global change
 - Restoring wetlands to limit increases in drought and flooding
 - Replanting riparian vegetation to limit in-stream water temperature increases
 - Increasing use of permeable pavements and other low-impact approaches to decrease runoff/increase groundwater recharge, which limits increases in drought and flooding

2. Examples of decreasing SENSITIVITY
 - Reducing or limiting levels of pollutants that increase temperature sensitivity
 - In restoration projects, replanting with a mix of species that can cope with a range of climatic conditions
 - Breeding or supporting the evolution of tolerance for likely future conditions in key populations of plants and animals
 - Anticipating and preventing (e.g. through programs to increase efficiency of water use by farms or municipalities) increased demands on resources by people as a result of climate change

3. Examples of increasing ADAPTIVE CAPACITY:
 - Making sure populations of plants and animals are healthy enough and genetically diverse enough that they can adapt evolutionarily to changing conditions
 - Supporting connections across the landscape and between different populations to support recovery from adverse events in part of a species’ range
 - Focusing protection efforts on areas with many climatic microhabitats
 - Increasing land- or seascape connectivity to support species range shifts