Moving from Vulnerability to Adaptation

EcoAdapt™
Meeting the challenges of climate change
Adaptation Planning Framework

Overarching Conservation Goal(s)

1. Identify Conservation Target(s)
 - Species
 - Habitats
 - Ecosystems

2. Assess Vulnerability to Climate Change
 - Sensitivity
 - Exposure
 - Adaptive Capacity

3. Identify Management Options
 - Reduce Sensitivity
 - Reduce Exposure
 - Increase Adaptive Capacity

4. Implement Management Options
 - Changes in Policy
 - Changes in Practice
 - Institutional Changes

Monitor, Review, Revise

From Glick et al. 2011 Scanning the Conservation Horizon
Defining Adaptation

Adaptation refers to efforts to reduce the negative effects of or respond to climate change.

Adaptation actions explicitly incorporate climate considerations, and aim to alleviate the impacts of climate change by increasing resilience and/or decreasing vulnerability.
Vulnerability

Adaptation Strategies

Resistance Resilience Transition

Increase Knowledge Engage Coordination
Prevent the effects of climate change from reaching or affecting you.

Examples:
- Manage forest vegetation, and reduce fire severity and patch size
- Increase proactive management to prevent invasive weeds
- Reduce erosion potential to protect municipal water supplies
- Identify and protect aquifer recharge zones
Resilience Strategies

Weathering the impacts of climate change by avoiding the effects of or recovering from changes.

Examples:

- Repair, replace, and reroute trails and trail bridges to increase resilience to higher peak flows
- Promote native genotypes and adapted genotypes of native species
- Employ a risk-diversification approach to forest management and silvicultural practices
Transition Strategies

Intentionally accommodate change and enable resources to adaptively respond to changing and new conditions.

Examples:

- Facilitate change to desired species assemblages
- Promote connected landscapes that can facilitate species migration along climatic gradients
- Identify and protect refugia
- Accept loss of recreation sites and/or adjust the timing or route of access
Applying Vulnerability Assessment Results in Adaptation Planning

• **Reduce Sensitivity**
 – *Example:* Actively plant drought-tolerant native species in an area projected to get drier (*resilience*)

• **Reduce Exposure**
 – *Example:* Replant riparian vegetation to limit water temperature increases (*resistance*)

• **Enhance Adaptive Capacity**
 – *Example:* Support connectivity across the landscape between different populations (*transition*)
Case Study #1: Gunnison Basin sage-grouse

Built a conceptual model to diagram factors that affect Gunnison sage-grouse population size and habitat condition.
Goal: Build wet meadow resilience for sage-grouse

Priority adaptation strategies

1. Retain water in most vulnerable brood-rearing habitats
 - Permanently tie water to land via easements
 - Improve irrigation practices
 - Restore seeps, springs; remove headcuts, gullies; raise water table

2. Improve and restore nesting and wintering habitats
 - Improve/re-establish leeward mtn shrub habitats via fencing, planting
 - Maintain and expand perennial grass and forb cover
 - Abate/prevent cheatgrass encroachment

3. Improve zoning laws and other policy options to protect habitat and maintain land uses
 - Transfer development rights
 - Protect habitats via subdivision planning
Goal: Build wet meadow resilience for sage-grouse

Temperature, Drought, Erosion | Water table

Actions

• One rock dams
• Media Luna
• Monitoring
Case Study #2: Seeps & springs in the Sky Islands

Fire, Air Temperatures, Drought

Altered Precipitation Patterns
Goal: Restore seeps and springs in the Sky Islands

Fire, Air temperature, Drought
Altered precipitation patterns

Priority adaptation strategies

1. Create climate-smart spring restoration methodologies
 - Develop a springs restoration manual and conduct trainings on its use

2. Restore upland habitat to increase recharge and decrease erosion (include fire considerations)
 - Assess upland grazing management for spring benefit/detriment
 - Adapt prescribed fire planning to consider springs locations
 - Conduct springs assessments ahead of planned restoration treatments

3. Improve infrastructure at spring sites to conserve water and provide habitat
 - Identify and implement evaporation-reducing devices for cattle tanks
 - Repair/restore infrastructure to conserve water
 - Identify springs where renovation or improvement of agriculture water sources help take pressure off springs as water source
Goal: Restore seeps and springs in the Sky Islands

Actions

- Conducted spring inventories and assessments using trained volunteers and professional staff and instituted a citizen scientist “Adopt-A-Spring” monitoring
- Repaired a spring-fed pond and installed native plants
- Installed fencing around perennial spring on private property
- Installed wildlife entry/exit ramps at developed springs for endangered frogs
- Developed a spring restoration guidebook for the region
Questions?

More examples available at CAKEx.org