PROJECTED CLIMATE CHANGES AND ASSOCIATED IMPACTS FOR SANTA ROSA, CA

CLIMATE CHANGES	METRIC	TREND	PROJECTED CHANGES
Air temperature	Minimum temperature		+4.4°F by 2050 and +8.1°F by 2100 COMPARED TO OBSERVED ANNUAL AVERAGE OF 43°F FROM 1961–1990
	Maximum temperature		+4.3°F by 2050 and +7.5°F by 2100 COMPARED TO OBSERVED ANNUAL AVERAGE OF 71.1°F FROM 1961–1990
Precipitation	Annual precipitation		+5.5 inches per year (+16%) by 2050 and +9.9 inches per year (+28%) by 2100, but model projections vary widely COMPARED TO OBSERVED AVERAGE OF 34.9 INCHES FROM 1961–1990
	Seasonality		Shorter/more intense wet season, with later onset of fall rains and earlier onset of the dry season; more pronounced interannual variability
Extreme heat	Extreme heat days MAXIMUM TEMPERATURES OVER 98.1°F		+10 days per year (+250%) by 2050 and +20 days per year (+500%) by 2100 COMPARED TO OBSERVED AVERAGE OF 4 DAYS PER YEAR FROM 1961–1990
extreme neat	Heat wave duration MOST CONSECUTIVE EXTREME HEAT DAYS PER YEAR		+2.5 days per year (+109%) by 2050 and +4 days per year (+174%) by 2100 COMPARED TO OBSERVED AVERAGE OF 2.3 DAYS PER YEAR FROM 1961–1990
Estrano	Intensity of extreme events 2-DAY TOTAL EXCEEDED ONCE IN 20 YEARS		+0.3 inches (+3%) by 2050 and +1.9 inches (+20%) by 2100 COMPARED TO OBSERVED 20-YEAR RETURN LEVEL OF 9.4 INCHES FROM 1961–1990
Extreme precipitation	Frequency of extreme events # OF EVENTS WITH 2-DAY TOTAL OVER 1.99 INCHES		+2 events per year (+67%) by 2050 and +3 events per year (+100%) by 2100, but model projections vary widely COMPARED TO OBSERVED AVERAGE FREQUENCY OF 3 EVENTS PER YEAR FROM 1961–1990
	Risk of drought years		Drought years are twice as likely to occur in any given year by 2050
Drought	Drought severity		Severe droughts that now occur every 20 years will occur once every 10 years, while 100-year droughts will occur every 20 years by 2100
Wildfire	Annual area burned		+9 hectares per year (+9.7%) by 2050 and +16.9 hectares per year (+18%) by 2100 COMPARED TO OBSERVED ANNUAL AVERAGE OF 93.1 HECTARES (RANGE OF 20–220) FROM 1961–1990

Projections were obtained from Cal-Adapt (http://cal-adapt.org) using high-emissions scenario for 2050/mid-century (average of 2035–2064) and 2100/late-century (average of 2070–2099) time periods compared to average conditions between 1961–1990. Precipitation seasonality and drought projections from (1) Swain, Langenbrunner, Neelin, Hall, Nature Climate Change. 8, 427 (2018); (2) Cook, Ault, Smerdon, Science Advances. 1, e1400082 (2015); (3) Pierce, Kalansky, Cayan, "Climate, drought, and sea level rise scenarios for the Fourth California Climate Assessment" (California Energy Commission, 2018).

CLIN	MATE CHANGES	LIKELY IMPACTS ASSOCIATED WITH PROJECTED CHANGES
3)	Higher average temperatures & more extreme heat	 Reduced growth and productivity of agricultural crops and native vegetation due to heat stress and increase in evapotranspiration Potential increase in insect pests and disease vectors (e.g., mosquitoes, rodents), with associated impacts to agriculture, public health, and native plants and wildlife Increased heat-related illness and death, particularly among vulnerable populations Greater demand for emergency services, public spaces that provide relief from extreme heat (e.g., libraries community centers), and water-dependent recreation
	Shifts in rainfall seasonality & increased risk of extreme flooding	 Reduced growth and productivity of agricultural crops and native vegetation due to a longer dry season Increased runoff during heavy rainfall events that follow dry periods, resulting in greater risk of landslides and flash floods Increased risk of injuries/death and property damage or loss during extreme flooding Damage to roadways and/or temporary loss of access to isolated neighborhoods Interruption of public services and possible public health impacts following damage to utilities Economic impacts of damage to businesses and agricultural operations
K	More frequent and/or severe droughts	 Reduced water availability due to declining surface water supplies and groundwater recharge combined with increased demand for agricultural and household use Increased stress and mortality in agricultural crops and native vegetation Increased cost of food and water Economic losses due to crop failures and loss of tourism associated with water-dependent activities
	More frequent and/or intense wildfires	 Increased risk of injuries and death due to burns and smoke inhalation, as well as longer-term health impacts related to eye and respiratory issues Damage and loss of homes, businesses, and other infrastructure, particularly within the wildland-urban interface (WUI) Possible disruption of critical supply chains, access to public services, and other linkages Economic losses due to direct damages (i.e., to businesses) as well as declines in tourism and recreation following fire Increased frequency of preemptive power outages for wildfire prevention, resulting in the loss of air conditioning, greater risk of food/medication spoilage, disruptions to public services, and other impacts

Sources:

- Cal-Adapt (http://cal-adapt.org)
- California's Fourth Climate Change Assessment (https://www.climateassessment.ca.gov/)
- California Adaptation Clearinghouse (https://resilientca.org/)
- California Governor's Office of Emergency Services, "California Adaptation Planning Guide" (Cal OES, Mather, CA, 2020)
- Sonoma County Regional Climate Protection Authority, "Climate Action 2020 and Beyond: Sonoma County Regional Climate Action Plan" (Sonoma County RCPA, Santa Rosa, CA, 2016)

This material is based upon work supported by the National Science Foundation under Grant No. 1811534. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.